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ABSTRACT

The development of the pulse detonation engine (PDE) requires robust design of the engine components
that are capable of enduring harsh detonation environments. In this study, a high cycle thermal fatigue test rig was

developed for evaluating candidate PDE combustor materials using a CO2 laser. The high cycle thermal fatigue
behavior of Haynes 188 alloy was investigated under an enhanced pulsed laser test condition of 30 Hz cycle

frequency (33 ms pulse period, and 10 ms pulse width including 0.2 ms pulse spike). The temperature swings
generated by the laser pulses near the specimen surface were characterized by using one-dimensional finite

difference modeling combined with experimental measurements. The temperature swings resulted in significant
thermal cyclic stresses in the oxide scale/alloy system, and induced extensive surface cracking. Striations of various
sizes were observed at the cracked surfaces and oxide/alloy interfaces under the cyclic stresses. The test results

indicated that oxidation and creep-enhanced fatigue at the oxide scale/alloy interface was an important mechanism
for the surface crack initiation and propagation under the simulated PDE condition.

INTRODUCTION

Pulse detonation engines (PDEs) have received increasing attention for future aerospace propulsion
applications. Because the PDE is designed for a high frequency, intermittent detonation combustion process,
extremely high gas temperature and pressure can be realized under the nearly constant-volume combustion

environment. The PDEs can potentially achieve higher thermodynamic cycle efficiency and thrust density as

compared to traditional constant-pressure combustion gas turbine engines [1]. However, the development of these
engines requires robust design of the engine components that are capable of enduring harsh detonation environments.
In particular, the detonation combustor chamber, which is designed to sustain and confine the detonation combustion

process, will experience high pressure and temperature pulses with a very short duration [2, 3]. Therefore, it is of

great importance to evaluate PDE combustor materials and components under simulated engine temperature and

stress conditions in the laboratory. In this paper, a laser impulsive thermal fatigue testing approach for evaluating
materials to be used in PDE combustor applications is described. The failure mechanisms of the combustor materials
under the simulated PDE conditions are also presented.

EXPERIMENTAL

A high cycle thermal fatigue test rig for PDE combustor materials has been established using a 1.5 kW CO2

laser. A schematic diagram showing the laser test rig approach and examples of the test specimen configurations are
shown in Fig. 1. The high power laser, operating in the pulsed mode, can be controlled at various pulse energy levels

and waveform distributions. The enhanced laser pulses can be used to mimic the time-dependent temperature and
pressure waves encountered in a pulsed detonation engine. Under the enhanced laser pulse condition, a maximum

7.5 kW peak power with a duration of approximately 0.1-0.2 ms (a spike) can be achieved, followed by a plateau

region that has about 1/5 of the maximum power level with several ms duration. The laser thermal fatigue rig has
also been developed to adopt flat and rotating tubular specimen configurations for the simulated engine tests. More
sophisticated laser optic systems can be used to simulate the spatial distributions of the temperature and shock waves
in the engine.
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A high power CO2 laser rig developed for testing PDE combustor materials and components under the

simulated engine temperature and stress conditions. (a) Schematic diagram showing a laser test rig, and the

measured laser pulse waveform from the pulse signal of a 1.5kW CO2 laser under the enhanced pulse mode
using an oscilloscope. The laser pulse width is 8 ms, and a maximum laser power 7.5kW can be achieved

over about 0.2 ms duration at the pulse enhancement mode; (b) and (c) Tubular and flat specimen
configurations adopted for the simulated PDE engine test, and combined (four point bend) mechanical

fatigue and laser surface impulsive thermal fatigue conditions, respectively.

In this study, pulse laser high cycle thermal fatigue behavior has been investigated on flat Haynes 188 alloy
specimen (dimension 50x50xl mm), under the test condition of 30 Hz cycle frequency (33 ms pulse period, and
10 ms pulse width including 0.2 ms pulse spike) [4]. In the test, a gaussian laser beam (with a radius of 16 mm and

the above mentioned pulse characteristics) was used to provide the specimen heating and room temperature air was

used for specimen backside cooling. Specimen temperatures were measured by two-color pyrometers. The specimens
were tested under the high frequency laser pulses at an average surface temperature of 800°C and the back

temperature of 650°C. Besides the laser high cycle fatigue (HCF) testing, the specimens were also thermally cycled
between the test temperatures and room temperature using 30 min hot cycles with 3 min cooling (low cycle fatigue or

LCF), simply by turning on and off the laser power to the specimen surface. The laser induced impulsive temperature
profiles and creep response in the test specimens are modeled to help understand the thermal fatigue behavior of the
materials system under the laser enhanced HCF and LCF test conditions. The material failure mechanisms under the

laser simulated PDE conditions are also presented in this paper.
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RESULTS
Figure2 showsthe temperatureresponseanddistributionscalculatedusingone-dimensionalfinite

differencemodelsfortheHaynes188alloyspecimenundertheenhancedlaserpulsethermalfatiguetestconditions.
Thenumericalcalculationsshowthatthattheenhanced0.2mslaserpulsespikes,whichareusedtosimulatethe
PDEtemperatureandshockwavepulses,cancausearapidcyclictemperatureswingonthespecimensurface,as
showninFig.2 (a).In addition,anadditional40°Ctemperaturefluctuationwithaninteractiondepthof 0.08mm
nearthespecimensurfaceregionwillbegenerateddueto theenhanced0.2mslaserpulsespikes,asshowninthe
temperaturedistributionplotof Fig.2 (b).Thisenhancedpulsedtemperatureswingwillbesuperimposedontothe
temperatureswingof80°Cthatisinducedbythe10msregularlaserpulsenearthe0.53mmdeepsurfaceinteraction
region(Fig.2(c)andFig.2(d)).
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(c) (d)

One-dimensional finite difference modeling results showing the temperature swings on a Haynes 188
specimen under the enhanced pulse condition (33ms pulse period, 10 ms pulse width including 0.2 ms

pulse spike). (a) Temperature pulses induced by the high energy laser pulse spike. (b) Temperature
swings due to the enhanced, 0.2 ms laser pulse spike. (c) Temperature fluctuations due to the regular

10 ms laser pulse. (d) Superimposed temperature profiles during the enhanced pulse laser testing at the
specimen surface.
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Specimenfailuremodeswereinvestigatedafterthelaserthermalfatiguetesting.As shownin Fig.3,
extensivesurfacecrackingwiththecrackdepthsof approximately30gmwasobservedonthetestedspecimens
undertheenhancedlaserpulsesandthermalcycling.Thesurfacecrackmorphologiesofthespecimenarefurther
showninFig.4.AscanbeseenfromFig.4,undertheoxidizingenvironments,oxidescales(typicallyCr203and
Ni,Crspineloxides)wereformedontheHaynes188specimensurfaces.Significantalloycreepandfatigue,as
indicatedbythedeformation,crackingandvariouslengthscalefatiguestriationsinthesubstrateneartheoxide/alloy
interfaceswereobservedunderthelasertestconditionsthatwereinvolvedwithlargethermalgradientsandsurface
temperatureswings.Thestressesoriginatedfromthelargethermalgradientsacrossthespecimen,aswellasthe
thermalexpansionmismatchbetweentheoxidescalesandsubstrateunderthelaserHCFandLCFtestconditions,
resultedinthealloycreepdeformationandlaterthesurfacecrackingduetotheoxidation-creepinteractionunderthe
complexcyclicstresses.

AsshowninFig.5, thelargeinducedcreepstrains,whichaccumulatedattemperatureunderthethermal
andstressgradients,canleadto alargetensilestressstateat thesurfaceuponcooling.Thespecimensurface
crackingcanbeinitiatedwhenthecreepstrainishighenough,andespeciallywhenthesurfacelayerisgreatly
weakenedbythepresenceof theoxidationscales,oxideinclusions,andgrainboundaryoxidedecorations.The
cracksinitiatedcanbefurtherpropagatedundertheenhancedlaserthermalimpulsivefatigueconditionsbecauseof
thethermalexpansionmismatchandthermalstressinducedcreep-oxidationinteractions.Thetestresultssuggestthat
oxidationandcreepenhancedfatiguecanbeanimportantmechanismfor materialssurfacecrackinitiationand
propagationunderthesimulatedimpulsivethermalcyclicconditions.

(a)

(b)

Surface cracking patterns of the Haynes 188 superalloy after the enhanced laser pulses and thermal cycling
(10.8 million 30 Hz high cycle fatigue cycles, and 200 30 min-heating-cooling cycles). (b) Cross-section of
tested specimen showing surface cracking penetration into the alloy.
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(a) (b)

(c)

Micrographs showing significant specimen oxidation, creep deformation and fatigue in the alloy substrate
near the oxide scale/alloy interfaces after the laser thermal cyclic testing. Oxide scale initial and further

growth is detrimental to the materials fatigue resistance due to the thermal expansion mismatch stress
induced creep-oxidation interactions.
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Fig. 5 Modeled creep strain distributions accumulated at temperature as a function of time under the laser thermal

gradient testing. Also shown is the surface cracking morphology after the laser testing. Large compressive

creep strains will occur at the specimen surface, which can lead to a large tensile stress state upon cooling.
The specimen surface cracking can be initiated under high creep strains combined with the surface
weakening due to oxidation.

CONCLUSIONS

A high cycle-enhanced pulse C02 laser thermal fatigue rig was developed for evaluating candidate PDE

combustor materials under simulated PDE conditions. The thermal gradient and temperature swings can result in
significant thermal cyclic stresses in the material system, and thus can induce surface cracking under surface

oxidation, creep and the thermal cycling conditions. The oxidation- and creep-enhanced fatigue cracking was
demonstrated experimentally. Fatigue striations of various sizes were observed at the cracked surfaces and oxide

scale/alloy interfaces. The test results indicated that oxidation and creep enhanced fatigue at the oxide scale/alloy
interface was an important mechanism for the surface crack initiation and propagation under the laser induced
surface impulsive fatigue conditions.

[1]

[2]

[3]

[4]
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